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Abstract. Energy-level statistics in a quasiperiodic system possessing a metal–insulator
transition is investigated. For this purpose, the integrated level-spacing distributionI (s) for
the Harper model with an incommensurate potentialui = λ cos(2πσi) is numerically calculated.
It is shown that there are only three possible distributions. In the metallic regimeλ < 2, I (s) is
of the form (2/π) cos−1(2As/π), whereA is a constant. In the insulating regimeλ > 2, I (s)
follows the same law as it does in the situation where the energy levels are equal toui . At the
critical point λ = 2, I (s) is described by an inverse power lawI (s) ∼ s−β with β = 1/2. The
derivative ofI (s) indicates that level-spacing distributions for the Harper model in the metallic
and insulator regimes are different from the well known Wigner surmise and Poisson law for
disordered systems.

Level statistics is an important tool in the study of complicated objects such as large
atoms, mesoscopic solids, and quantum systems with chaotic behaviour in the classical
limit [1–3]. This technique was recently applied to deal with the electronic localization
problem in disordered systems [4–6]. It was shown that the metal–insulator transition in
the three-dimensional Anderson model can be described by the level-spacing distribution
(LSD) P(s), which is defined as the probability density of level spacingss of the adjacent
levels. In the metallic regime,P(s) follows the Wigner surmisePW(s) ∼ s exp(−cs2),
wherec is a constant. On the insulating side, the spacings are distributed according to the
Poisson lawPP (s) ∼ exp(−s). Thus, as disorder increases, the metal–insulating transition
is accompanied by a transition of the spacing distributions from the Wigner surmise to
the Poisson law. In a one-dimensional disordered system with the Anderson Hamiltonian,
electronic states are localized. It can be proved that the LSD of the spectrum also follows
the Poisson law [6]. The Wigner surmise demonstrates level repulsion between energy
levels forPW(s)→ 0 whens → 0. On the other hand, sincePP (s) 6= 0 whens → 0, level
clustering occurs if the distribution follows the Poisson law.

The introduction of quasiperiodicity into solid state physics has greatly enriched
the study of electronic localization [7–9]. Interest arises from not only the pure
theoretical aspects but also experiments, e.g., the discovery of quasicrystals and the
successful preparation of quasiperiodic semiconductor superlattices. Level statistics in
the quasiperiodic system of the Harper model was investigated [10–12]; this has the
tight-binding HamiltonianH = ∑

i ui |i〉〈i| +
∑

i,j v|i〉〈j |, whereui = λ cos(2πσi) with

σ = (√5−1)/2 is the site energy at theith site. In the second sum ofH , only interactions
with the nearest neighbours are considered andv = 1. In addition to its quasiperiodic
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Figure 1. ILSDs I (s) for the Harper model withN = 987 and various modulationsλ.

nature, the Harper model is directly related to the Bloch electrons in a magnetic field [13].
This model is also relevant to the study of quantum systems with chaotic behaviour in the
classic limit [17]. The Harper model displays a metal–insulator transition similar to that
of the Anderson Hamiltonian in disordered systems [8, 9, 14]. In the regimeλ < 2, the
spectrum is absolutely continuous and eigenstates are extended. Forλ > 2, the spectrum is
pointlike and eigenstates are localized.λ = 2 is the critical point at which the spectrum is
a Cantor-like set and the state is critical.

Machida and Fujita [10] found three distinctive distributions for the Harper model: the
Poisson type forλ > 2, an inverse power law atλ = 2, and a complected distribution for
λ < 2 (they failed to find a single-function form to fit such a distribution). The inverse
power law atλ = 2 was further confirmed by Geiselet al [12]. Megann and Ziman
[11] studied the level statistics of the Harper model in a different way by introducing new
spacings normalized by the average local density of states. However, their calculation does
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not provide any information in the comparison of the level statistics between the Harper
model and disordered systems. In this letter, we study the level statistics for the Harper
model. Particular attention will be paid to the shape analysis of the LSD in the metallic and
insulating regimes to examine the difference of the level statistics between quasiperiodic
systems and disordered structures. We will show that spacing distributions in the regimes
λ < 2 andλ > 2 follow two simple laws which are different from the distributions suggested
by Machida and Fujita [10].

We numerically treat the finite-size cluster with number of sitesN = Fl (Fl is the
Fibonacci number which is associated with the golden meanσ = liml→∞ Fl−1/Fl). The
energy levels are calculated by the direct diagonalization of anN ×N Hamiltonian matrix.
For the quasiperiodic system, the density of states has huge fluctuations at all energy scales.
In this case, one calculates the level-spacing distribution without any unfolding [18, 10, 12]
and defines the level spacings ass = (Ei+1−Ei)/(W/N), whereW = Emax−Emin. We will
look to the integrated level-spacing distribution (ILSD)I (s) defined asI (s) = ∫∞

s
P (s ′) ds ′,

which is, in fact, the fraction of the total number of gaps larger than some sizes. The
probability density of level spacings is then given byP(s) = −dI/ds.

ILSDs for N = F15 = 987 at various values of modulation strength are presented in
figure 1. From figure 1, one can see that spacing distributions which correspond to three
cases (λ < 2, λ = 2 andλ > 2) seem to have three different features.I (s) for λ = 2
exhibits a marginal behaviour. By measuring the slope in figure 2(a), we find that the ILSD
for λ = 2 is described byIC(s) ∼ s−β , with β = 1/2, which agrees quite well with the
result obtained using the periodic boundary conditions [10, 12]. From figure 2(a), one can
also see that there exists a cutoff of the scaling region. The behaviour of such a cutoff,
which ensuresI (0) = 1, was clearly stated in [12]. In the following, we focus attention on
the shape analysis ofI (s) in the casesλ < 2 andλ > 2.

An electron in the Harper model forλ < 2 behaves in the same way as it does in a
periodic chain [8, 9, 14–16]. Thus one may expect that the LSD follows the same law. First,
let us consider a periodic chain with number of sitesN . The Hamiltonian parameters are
v = 1 andun = 0. From the matrix theory, eigenenergies of theN ×N tridiagonal matrix
are given by

Ek = 2 cos
kπ

N + 1
k = 1, 2, 3, . . . , N. (1)

The above equation gives the gap width1k = |(Ek+1− Ek)/(4/N)| of adjacent levels

1k = N sin

(
k + 1/2

N + 1
π

)
sin

(
π/2

N + 2

)
k = 1, 2, 3, . . . , N − 1. (2)

Using (2), one can exactly calculateI (s). For larger-sized systems, i.e.N � 1, it can be
shown thatI (s) ≈ IE(s) with

IE(s) = (2/π) cos−1(2s/π). (3)

Thus the LSDP(s) is given by

PE(s) = (2/π)2
√

1− (2s/π)2. (4)

In the limit s → 0, PE(s)→ (2/π)2 indicates level clustering. From (1) and (2), one can
see thats = 0 is located at the edges of the spectrum of a periodic chain, where the Van
Hove singularity occurs. This suggests that such a level clustering is linked to the Van Hove
singularity.

Now we turn to the Harper model withλ < 2. It is clear from figure 2(b) that
cos(πI/2) ≈ 2As/π , which yields I (s) ≈ IE(As), whereA are slopes of the lines in
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Figure 2. ILSDs I (s) for the Harper model withN = 987: (a) a plot of lnI (s) against lns for
λ = 2 showsI (s) ∼ s−β , with β = 1/2; (b) a plot of cos(πI/2) against 2s/π for λ < 2, in
which λ = 0 corresponds to the case of a periodic chain; (c) a plot ofI (s/B) for λ = 3, 4 and
5 with B = 0.29, 0.45 and 0.56, respectively, shows the fitI (s) ≈ IL(Bs).
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figure 2(b). Note thatλ = 0 in figure 2(b) confirms the analytical result in (3) with the
slopeA = 1. Therefore the LSD of the Harper model in the metallic regime is described
by APE(As), which exhibits the same properties as the LSDPE(s) does.

For a random matrix with zero off-diagonal elements, there is a completely random
sequence of eigenenergies which is given by the random site energies (this corresponds
to the case of the Anderson model with strong disorder). The Poisson law describes the
spacing distribution of such random sequences of eigenenergies. The surprising discovery
is that, due to the localization of eigenstates, the Poisson law is suitable for describing the
LSD in the whole insulating regime for the Anderson Hamiltonian [4–6]. In a quasiperiodic
system, site energies in the Hamiltonian are deterministic. Consider anN×N quasiperiodic
matrix with zero off-diagonal elements and diagonal partu. Eigenenergies of this matrix
are given byui = λ cos(2πσi), with i = 1, 2, 3, . . . , N , which corresponds to the case
of the Harper model with strong modulationλ/v � 1. Let us usePL(s) and IL(s) to
denote the LSD and ILSD of the energiesui , respectively. It is easy to show thatPL(s) is
far from the description of the Poisson law, which implies the failure of the Poisson law
found by Machida and Fujita forλ > 2. In fact the fit presented in [10] is suitable only
in a small range of spacing. Considering the fact that random Hamiltonians have the same
spacing distribution no matter whether the off-diagonal elements are zero or not in the case
of localized states, the LSD for the Harper model withλ > 2 may show the same behaviour
asPL(s) does.

As expected, our calculation shows theI (s) for λ > 2 can be described byIL(Bs),
whereB is a constant related toλ. Whenλ → ∞, we haveB → 1. Such a fit is well
demonstrated in figure 2(c). Thus, the associatedP(s) is given byP(s) ≈ BPL(Bs).
Calculation ofPL(s) for largeN up toN = F23 = 46 368 shows thatPL(s)→ 0.45 when
s → 0. Therefore the LSD for the Harper model withλ > 2 hasP(s) 6= 0 whens → 0,
which indicates the occurrence of level clustering. The above analysis shows that such
level clustering is related to not only the localization of the eigenstates but also the spacing
distribution of the site energies of the Hamiltonian.

In conclusion, we have shown that the technique of level statistics can be used to
demonstrate the metal–insulator transition in quasiperiodic systems. For the Harper model,
there are three possible distributionsAPE(As), PC(s) andBPL(Bs) for λ < 2, λ = 2 and
λ > 2, respectively, whereA andB are constants related to the modulation strengthλ.
PE(s) is determined by the eigenenergy of a periodic chain whilePL(s) is given by the
energy levels which is equal to the quasiperiodic site energies.PC(s) displays an inverse
power lawPC(s) ∼ s−β , with β = 3/2. As λ increases, the metal–insulator transition is
accompanied by a crossover of the level-spacing distribution fromAPE(As) to BPL(Bs)
acrossPC(s). In the limit s → 0, PE(As) 6= PC(s) → ∞ andPL(Bs) 6= 0 indicates that
the level clustering occurs for three different kinds of spectrum of the studied model. It
is interesting to further study the relation between the level clustering found here and the
level clustering associated with the Poisson law in a disordered system. Finally, since the
studied model is relevant to the kicked Harper model [17], we would like to point out that
the results presented here can be applied to the study of such a quantum system with chaotic
behaviour in the classical limit. In addition, the technique of level statistics was recently
used to investigate the electronic properties of quasicrystals [18]. Our research may also
shed light on this problem.

The author is grateful to Professor Y Liu for helpful discussions. This work was supported
by the National Natural Science Foundation of China.
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